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INTRODUCTION

-In the past few years, there has been a renewed interest in the structure of an

electrolyte at an electrode interface (the so-called electric double layer). If only the ions are

taken into account explicitly, with the solvent represented by a uniform dielectric medium of

constant dielectric constant e, the potential difference across the double layer is much smaller

than is observed experimentally. This remains true even if the Poisson-Boltzmann theory of

Gouy1 and Chapman 2 (GC) is replaced by more refined theories, such as the hypernetted

chain approximation. 3,4

Presumably, this error is due to the simplified treatment of the solvent. If it is assumed

that the dielectric constant ; in the so-called inner region between the hard, flat, charged

wall (the electrode) and a plane passing through the centers of the charged hard spheres in

contact with the wall is different from the bulk value e, 'he potential drop across the

interface is

V . E + 0,(0
2i (

where a is the diameter of the charged hard spheres (v/2 is then the distance of closest

approach to the wall), -E/41r, is the charge density on the wail, and 0 is the potential

difference between the plane of &/2 and infinity, s shown in Fig. 1.

If i = e, the calculated V is too small. Choosing i<e gives a larger potential

difference. Obviously i can be adjusted to agree with experiment. The fact that a single

value of i gives fairly good agreement with experiment for a wide range of concentrations

and values of E indicates that there is a physical basis to this ad hoc procedure. However, as



will be shown, the view that the solvent structure need be taken into account only in a single

layer is too extreme.

ION-DIPOLE MODEL

A more realistic model of the solvent is a collection of hard spheres with imbedded

point dipoles. Although lacking as a model of water, it is certainly a better model solvent

than a dielectric continuum with or without a discontinuity in the dielectric constant near the

wall. Our model electrolyte is then a mixture of charged hard spheres of diameter a and

charge zie (where zi is the valence of ionic species i and e is the magnitude of the electronic

charge) and dipolar hard spheres of diameter a and dipole moment A. We could consider the

ions to be of different diameter. We will not do this firstly because there has been little

theoretical work on the theory of ions of unequal size and secondly because, as we shall see,

* the explicit solvent term dominates and so the effect of differences in ionic diameters is

*small.

Let Pi=Ni/V (V is the volume) be density of the ions of species i and Pd=Nd/V be

the density of the dipoles. Further, let

PO " Pi" (1)

Because of charge neutrality,

i-~pizi 0 0. (2)
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Near the wall the electrolyte will be inhomogeneous. Thus, there is a density profile for the

ions which we may write

p1(x) = pigi(x)

= pi[h(x) + 1], (3)

where x is the distance from the wall. Similarly, the density profile of the dipoles is

Pd(X) - pdgo(x,2), (4)

where 2 specifies the orientation of the dipoles. Now,

gd(x,2) = g0(x) + V3 Ahd(X) cos 0 - ...+ (5)

where

i0

e g°(x)- I + h°(x)

SL f g,(xg)dl , (6)41r

where d12 is the differential element of solid angle, and

Ahd(X) - f gd(x) cos 0 d , (7)4vr

where 0 is measured from a normal from the wall.

If -E/4." is the charge density on the wall, then the total amount of charge

accumulated near the wall must be equal in magnitude, but opposite in sign to this charge
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density. Hence,

eiI zipif hi(t)dt - E/41r (8)

The potential difference across the interface is

m
= 41re I zipi fo t hj(t)dti-iIpo

+ .fr d Ahd(t)dt,

whereA J = I.

THE MEAN SPHERICAL APPROXIMATION

Having specified the model and defined the relevent functions, an approximation must

be introduced to obtain results. First, we use the mean spherical approximation (MSA)

where the core condition g(x)=O inside the ionic or solvent cores is combined with the

approximation that outside the cores, the direct correlation function is equal to the negative

of the pair potential divided by kT (k is Boltzmann's constant and T is the temperature).

The MSA integral equation has been solved for the ion-dipole-wall system. 5 ,6 The

general solution is implicit and has not yet been examined fully. However, in the limit of low

concentrations of ions, the MSA results are explicit. In this low concentration limit,

!3zieE e x ° ' ) (0
gi(x) - gO(x) + eK - (10)

1U
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where g0(x) is the density profile (normalized) for hard spheres near a hard wall, 7 #-I /kT,

and

2 4ir~e2  m (21
i-I

is the Debye screening length.

Apart from the term go(x), which makes no contribution in either Eq. (8) or (9)

because of charge neutrality, Eq. (10) is the solution of the MSA for a system of charged

hard spheres in a dielectric medium of dielectric constant e. In other words, at low

concentrations in the MSA, the ionic terms have been decoupled from the dipolar terms.

In the MSA, gd(x) is the hard sphere/hard wall profile, g0 (x). In the limit of low

concentrations, Ahd(x) satisfies

2

Ahd(X) -- e P6  z ip i hi(t)dt

+ Sdi + 4 3 h(X - Sd

P3P1

+ d d tdi) h(x - t - S)dt
'2' P12  Si a ~2

+ 2b~2 f 1 ! 1 l2
6 ad

-2b2h -11 t'xo/) t- Od )A.hd(X - t)dt. (12)2 oP6O
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where

-di 2 d2(13)

ad +4 adi =t 2

(a,b) means that the minimum of a and b is to be used, and

93.2n - 1 + (- 1)n b 2/(3"2 n ) (15)

The parameter b2 (and thus, 93, 06, and 12 ) is related to e by
4 2

e 3 2 3 (14)

136

The MSA values for the two integrals which contribute to V in Eq. (9) are

41re zip1 f" th1(t)dt I E[+. ME (15)

and

PdAi f, hd(tdt L [1 .+(a-Od/X)] -

where 'X'P 3/P 6. Thus,

F1 + + o Od)] (17)
ZOK I 2

It is to be noted that there has been a cancellation between terms of order I and (e-l)/e to

produce a term of order 1/e. If

ad 0n ,
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we obtain

which is the result for charged hard spheres in a uniform dielectric medium. Thus, the

contribution due to the discrete nature of the solvent is (e-1) OdE/2xe. This is formally

identical to Eq. (1). In fact, if

6= e ,(19)

Eqs. (1) and (17) are identical (if the MSA is used to calculate 00). However, the

underlying physical pictures are quite different. In Eq. (1), the solvent is presumed to be

affected by the wall only within an inner layer of thickness 0/2 whereas, as is seen from

Fig. 2, the orientational effects of the dipoles near the wall extend several layers into the

blind. It is not meaningful to talk about an inner layer capacitor in series with a diffuse layer

capacitor.

Equation (14) can be rewritten as

16 2  (20
16e . X2(A + 1) (20)

If e is set equal to the bulk 4ielectric constant of water (e-78), X=2.65. Thus,

(e-1)/A-29.1. A reasonable value for water is Od- 2. 76 A. The solvent term (e-l)od/X

dominates so that the precise value used for a is not critical. For simplicity, we may use
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a-=a d . Results obtained form Eq. (17) for the differential capacitance,

Cd = 1 3E4ir &V

= B , (21)

+ l+.E(a + -ad)

compared with experiment 8 in Table I. In as much as the MSA in a linearlized theory, it is

expected to be useful only for small charge on the electrode. As a result, the comparison in

Table I is confined to this region. The agreement is good considering that no adjustable

parameters are employed.

A SIMPLE EXTENSION OF THE MSA

Well known extensions of the MSA exist. Examples are the hypernetted chain (HNC)

approximation and more simple LHNC and QHNC approximations. The LHNC

approximation is a linearized theory and presumably shares many of the deficiencies of the

MSA. The others are more complex and lead to equations which are difficult to solve even

numerically.

In addition to the numerical difficulties, there exists another problem. We have seen

that in the MSA. there is a cancellation between terms of order I and (e-l)/ to produce a

term of order I e in the potential. This was no problem in the MSA since all the terms were

analytic. However, in a theory where the analogues of Eqs. (15) and (16) are obtained

numerically and where e-S0, a one percent error in either term may produce a hundred

percent error in V. Clearly, a theory must be formulated so that this cancellation is effected



9

before the commencement of numerical calculations if a reliable result for V is to be

obtained.

In the MSA, Eq. (12) is coupled with the solution of the MSA for h(x) for charged

hard spheres in a uniform continuum dielectric medium. A simple procedure would be to

retain Eq. (12) but to use some more general expression for hi(x) such as the nonlinear GC

theory or the HNC theory for charged hard spheres in a dielectric background.

In general, h(x) would have to be determined numerically. However, as long as the

hi(x) satisfy charge neutrality, Eq. (8), the potential is given by

4 re " thi(t)dt + e-1 (22)
zii e 2A

The desired cancellation between terms of order I and (e-l)/e has been accomplished.

Values for

w'r ZiPifo (t - a/2) hi(t)dt , (21)
e0 -"- i  *2

calculated from the MSA, GC and HNC theories for charged hard spheres in a dielectric

medium, are compared with the simulation results of Torrie and Valleau9 in Fig. 3. The

MSA result is useful only for small charge densities on the wall. The GC theory results are

appreciably larger than the simulation results. On the other hand, the HNC results are in

quite good agreement with the simulation results.
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For the total potential V, and thus the differential capacitance, the explicit solvent

contribution. (e-l)Ead2,e, dominates. Hence, as is seen in Fi,. 4, the differences in Cd

between the use of the GC and HNC results for hi(x) in Eq. (21) are smaller.

SUMMARY

Equation (12) provides a theoretical basis for Eq. (1). The potential is formally

identical that obtained from a collection of charged hard spheres in dielectric medium near a

charged hard wall with an inner layer whose properties are different from the bulk.

However, the physical interpretation is quite different. The effect of the wall on the solvent

is not confined to an inner layer of thickness a/2 but extends for several days into the fluid.

In addition, no artificial semi-macroscopic concept, such as a local dielectric constant, need

be introduced. The explicit solvent contribution to V arises from microscopic orientational

effects on the dipoles near the wall.

The aereement with experiment is qualitative. To obtain better agreement with

experiment (e-l)/\ would have to be treated as a parameter. The charge in (e-l)7,\ would

not be large and could be ascribed to polarization or some other phenomenon neglected in

the model.

One defect of Eq. (22) is that for a binary electrolyte for which I zi -z. the resulting

capacitance is symmetric under a charge in the sign of the charge on the electrode. Allowing

the ions to be of different size does not help much since the explicit solvent term dominates.

Presumably, the asymmetry comes from the solvent. Effects such as a nonspherical solvent

molecule. specific adsorption, and image forces should be uncorporated into the model.
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TABLE 1

Differential capacitance (f/rn 2 ) in the limit of zero charge.

(The theoretical values are for o--ad= 2 .76A, I zi I -z-1,
T=298K, and e=78.4. The experimental values are for NaF.)

Core Expt. Theor. [Eq. (21)]

10- 4 M -- 0.02

10- 3 M 0.06 0.05

1O-2M 0.13 0.10

10IM 0.21 0.14

IM 0.26 0.16
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Figure 1. Double layer geometry in conventional inner layer treatment.
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